WWW.DIS.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     || 2 |

«Для подбора наиболее эффективного оборудования, его наладки и правильной эксплуатации необходимо проводить комплекс пылевых измерений. В этом комплексе анализ дисперсного состава ...»

-- [ Страница 1 ] --

Об анализе дисперсного состава пыли

Для подбора наиболее эффективного оборудования, его наладки и правильной

эксплуатации необходимо проводить комплекс пылевых измерений. В этом комплексе

анализ дисперсного состава пыли имеет наиболее важное значение, так как в значительной

мере объясняет их физико-химические свойства, а следовательно, их технологические

качества. Без характеристики степени дисперсности промышленных пыли нельзя

объективно оценить эффективность действующих пылеочистных устройств.

Кроме того, необходимо отметить, что размер частиц является важным фактором их воздействия на организм человека. Особую опасность представляют респирабельные и трахеобронхиальные пылинки, способные проникать в альвеолы и периферии лёгкого. В мировой практике с учётом рекомендации Всемирной организации здравоохранения в ряде стран осуществлён переход на нормированное содержание в воздушной среде частиц с размерами не более 2,5 мкм. Таким образом, для объективной оценки опасности здоровью человека в воздухе рабочей и санитарно-защитной зон требуется знать процентное содержание частиц исключительно малых размеров.

Для вышеперечисленных целей ООО «ПТБ ПСО «Волгоградгражданстрой»

проводит исследования дисперсного состава пыли, выделяющейся от оборудования, в системах аспирации и витающей в воздухе рабочей зоны различных предприятий.

Отбор проб для проведения дисперсного анализа производится по стандартной методике «Методические указания по определению объема и запыленности технологических газов в газоходах», Новосибирск, 1983.

Метод определения дисперсного состава пыли основан на цифровом фотографировании увеличенных под микроскопом (рис.1) в 200раз полей пылевидных частиц, закрепленных на предметном стекле (рис.2). С помощью компьютерной программы по площади, занимаемой пылевидной частицей и рассчитывается её медианный диаметр, и определяется количество частиц различного размера.

Рис.1 Определение дисперсного состава пыли под микроскопом Дисперсный состав пыли рассматривается, как установление доли частиц различного диаметра.

Рис. 2. Микрофотография коксовой пыли, отобранной в системе сушильного барабана цеха анодной массы алюминиевых производств:

.

Графический способ оформления результатов предусматривает построение дифференциальных кривых распределения по размерам, откладывая по оси абсцисс значения dч, а по оси ординат плотность распределения частиц соответствующего размера в % (рис.3).

,% 2 d ч, мкм 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Рис. 3. Дифференциальные кривые распределения массы частиц по диаметрам для коксовой пыли, отобранной в системе сушильного барабана цеха анодной массы алюминиевых производств:

1- в системе аспирации от сушильного барабана;

2- после пылеуловителя первой ступени;

3- после пылеуловителя второй ступени;

4- после пылеуловителя третьей ступени.

Однако наиболее удобным является графическое изображение результатов дисперсных анализов в виде интегральных кривых R(dч) или D(dч), каждая точка которых показывает относительное содержание частиц с размерами больше или меньше заданного.

Интегральные кривые для частиц с "логарифмически нормальным распределением удобно строить в вероятностно-логарифмической системе координат, где они приобретают вид прямых линий (рис. 4). Для построения такой системы координат по оси абсцисс в логарифмическом масштабе откладывают значения dч, а по оси ординат – значения D(dч) или R(dч).

Рис. 4. Интегральные кривые распределения массы частиц по диаметрам в вероятностно-логарифмиеской сетке для коксовой пыли, отобранной в системе сушильного барабана цеха анодной массы алюминиевых производств:

1- в системе аспирации от сушильного барабана;

2- после пылеуловителя первой ступени;

3- после пылеуловителя второй ступени;

4- после пылеуловителя третьей ступени.

Аналитическое описание дисперсного состава пыли возможно с помощью нормальное распределение считается наиболее обоснованным для аналитического описания данных дисперсного анализа пыли, если речь идет о продуктах размола.

Академик А.Н. Колмогоров, исходя из простых предположений о характере процесса дробления твердых частиц, показал, что в процессе измельчения распределение частиц асимптотически стремится к логнормальному, в котором нормально распределен не диаметр частиц, а его логарифм.

распределения массы дисперсного материала по диаметрам частиц представляется в виде:

где d - стандартное отклонение логарифмов диаметров.

lgd Логарифмически нормальное распределение считается наиболее обоснованным для аналитического описания данных дисперсного анализа пыли, если речь идет о продуктах размола. Однако в систему аспирации зачастую крупные частицы не попадают из-за того, что скорость их витания выше скорости в рабочем сечении местных отсосов от технологического оборудования. Минко и ряд других исследователей доказали, что для аспирационной пыли характерно усеченное логарифически нормальное распределение.

Именно поэтому даже в вероятностно-логарифмической системе координат результаты дисперсного состава пыли, отобранной из системы аспирации, не приобретают вид прямых линий.

В качестве примера представлен анализ дисперсного состава пыли, выделяющейся от гипсоварочного котла гипсового производства.

Для совершенствования метода описания анализа дисперсного состава пыли нами было предложено использование метода «рассечения». Обработка результатов анализа дисперсного состава пыли в воздухе рабочей зоны целого ряда производств (асфальтобетонного, техуглерода, и др.) показала, что для частиц пыли до 20 мкм разброс случайной величины D(t, ), при фиксированном, мал по сравнению с её разбросом для частиц пыли больше 20 мкм.



бетоносмесительном отделении, отобранные с целью разработки мероприятий по улучшению состояния воздушной среды на ряде заводов по производству железобетонных изделий Волгоградской области. В табл. 1 представлены значения медианы распределения и стандартного отклонения логарифмов диаметров от их среднего значения для мелких и крупных фракций, а также координаты узловой точки для рис. 6.

Рис. 5 Интегральные кривые распределения массы по диаметрам частиц D(dч) в вероятностно-логарифмической координатной сетке для гипсовой пыли линии производства гипсовых вяжущих, отобранной: 1 - в системе аспирации от гипсоварочного котла; 2 - от кольца мельницы: 3 - аспирации до батареи циклонов; 4 - после батареи циклонов; 5 - после Таблица 1 - Значения медианы распределения и стандартного отклонения логарифмов диаметров от их среднего значения для мелких и крупных фракций пыли, отобранной в воздухе рабочей зоны бетоносмесительного цеха

КООРДИНАТЫ

МЕЛКИЕ ФРАКЦИИ КРУПНЫЕ ФРАКЦИИ

УЗЛОВОЙ ТОЧКИ

ТОЧКИ На рис. 6 на вероятностно-логарифмической сетке по результатам измерений построены интегральные функции распределения массы частиц по диаметрам в различных точках рабочей зоны. Дисперсный анализ показал, что все кривые имеют вид усеченной логарифмической кривой, для описания которой наиболее удобно использовать двухзвенную ломаную, у которой один участок описывает более мелкие частицы, другой – более крупные. Координаты узловой точки – точки слома графика, и углы наклона ломаной подбираются методом наименьших квадратов.

Рис. 6 Интегральная функция распределения массы частиц по диаметрам: 1, 4, 5, Однако полученные данные не позволяют составить устойчивую картину в целом, т. к. значения интегральной функции распределения разных проб имеют большой разброс.

Например, на рис. 6 колебания интегральной функции распределения по диаметрам для мкм, изменяются от 10 до 60 %, при среднем значении 32 %. Причина в том, что на интегральную функцию распределения наиболее существенное влияние оказывает доля крупных фракций, а информацию о закономерности распределения для мелких фракций в стандартной форме, представленной на рис.2.3, получить невозможно.

При этом разброс значений функции прохода D(dч) следует отнести не к разряду ошибок, а к особенностям случайного процесса, который в силу влияния различных технологических параметров воздушной среды в рабочей зоне (влажность и подвижность воздуха и т. п.) определяет фракционный состав пыли. Поэтому представляется целесообразным рассматривать функции, описывающие дисперсный состав взвешенных частиц в рабочей зоне не как детерминированные, а как случайные.

Для более удобного описания дисперсного состава пыли как случайной функции предлагается метод «рассечения». В основе его лежит идея о том, что дисперсный состав собственно мелких фракций постоянен, а поведение интегральной функции распределения в большей степени зависит от доли крупных частиц. Для этого разделяем всю совокупность частиц на мелкие и крупные или по классификации Медникова на тонко – и грубодисперсные (в нашем случае граница – 20 мкм).

Для того, чтобы изображать отдельно мелкие и крупные фракции функции распределения введем ряд обозначений. Пусть dуз – узловая точка, в которой происходит «слом» графика интегральной функции распределения массы частиц пыли по диаметрам.

Тогда для мелких фракций определим интегральную функцию распределения.

Для крупных частиц аналогично:

Затем построим интегральные функции распределения массы частиц отдельно для пыли до 20 мкм и пыли более 20 мкм. Проведем это «рассечение» для каждой из кривых – 12 (рис. 6) и представим полученные значения интегральных функций распределения на рис. 7.

Рис.7 Значения интегральных функций распределения для крупных и мелких частиц пыли, отобранной в воздухе рабочей зоны бетоносмесительного цеха Оказалось, что все 10 кривых фактически сложились в одну кривую, которая дает полное представление о составе мелких фракций. Таким образом, если рассматривать отдельно фракции до 20 мкм, то они на всех местах рабочей зоны имеют постоянный состав, и описываются логарифмически – нормальным распределением с параметрами d и lg (для dч 18 мкм: d50 = 13 мкм, lg = 0,7, для 18мкм dч 20 мкм: d50 = 16 мкм, lg = 0,03).

Следовательно, дисперсный состав мелких фракций наиболее постоянен, и в результате мелкую пыль можно описать детерминированной кривой, например, в вероятностно – логарифмической сетке – двухзвенной.

Состав крупных фракций (dч 20 мкм) наиболее удобно описывать с помощью вероятностно – стохастического подхода, рассматривать функции D(dч) как случайные, и говорить не только о средних значениях, но и о функциях плотности вероятностей для диаметров частиц dч.

1. Колмогоров А.Н. О логарифмически-нормальном законе распределения размеров частиц при дробления//ДАН, XXXI, №2, 1941. – С. 99-101.

2. Ширяев А.Н. Вероятность. – Наука, М., 1980.-581с.

3. Коузов П.А. Основы анализа дисперсного состава промышленных пылей и измельчённых материалов. – 3-е изд. перераб. – Л.: Химия, 1987, 264 с.

4. Азаров В. Н. [и др.]. Методика микроскопического анализа дисперсного состава пыли с применением персонального компьютера (ПК) / // Законодательная и прикладная метрология. – 2004. – № 1. – С. 46-48.

5. Медников Е.П. Турбулентный перенос и осаждение аэрозолей. – М.: Наука, 1981. – 6. Колмогоров А.Н. О логарифмически нормальном законе распределения частиц при дроблении /ДАН СССР. – 1941. – Т. 31. - № 2. – С. 1030 – 1039.

7. Дисперсный состав пыли как случайная функция /В.Н. Азаров, Д.В. Азаров, А.Б.

Гробов и др. // Объединенный научный журнал. – 2003. - № 6. – С. 62 – 64.

8. Минко В.А. Обеспыливание технологических процессов производства строительных материалов. – Воронеж, 1981. – 175 с.



Pages:     || 2 |

Похожие работы:

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) С.М. СТАРИКОВСКАЯ ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ. СЕМИНАРСКИЕ ЗАНЯТИЯ 1.5. ИСТОЧНИКИ И ПРИЕМНИКИ ИЗЛУЧЕНИЯ Учебное пособие Москва 2007 УДК 53.082 С.М.Стариковская. Физические методы исследования. Семинарские занятия. 1.5. Источники и приемники излучения: Учебное пособие. – М: изд-е МФТИ, 2007. — 55 с. Данное учебное пособие является пятым из цикла пяти пособий для семинарских занятий в первом семестре изучения курса...»

«Министерство образования Российской Федерации Ростовский государственный университет Кафедра теоретической и вычислительной физики Г. М. Чечин, Е. В. Положенцев, С. В. Нижникова Поиск информации в сети Internet Методические указания к курсу Компьютерные методы в современном естествознании. Методические указания для студентов дневного отделения физического факультета РГУ Ростов-на-Дону 2001 г. Печатается по решению учебно-методической комиссии физического факультета РГУ протокол № 4 от...»

«СЕВЕРНЫЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ Кафедра военной и экстремальной медицины И.Г. Мосягин, А.А. Небученных, В.Д. Алексеенко, И.М. Бойко Медицинская служба гражданской обороны Учебное пособие по медицинской службе гражданской обороны для студентов высших медицинских учебных заведений обучающихся по специальностям: 040100 – лечебное дело 040200 – педиатрия 040300 – медико-профилактическое дело 040400 – стоматология 040500 – фармация 040800 – медицинская биохимия 040900 – медицинская...»

«МИНОБРНАУКИ РОССИИ ГОУ ВПО УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра физической, органической химии и нанодисперсных технологий В.Т. Брунов В.В. Свиридов ВОПРОСЫ И ЗАДАЧИ ПО ФИЗИЧЕСКОЙ ХИМИИ (ЧАСТЬ 3) Методические указания по физической химии для самостоятельной работы студентов инженерно-экологического факультета специальностей 240100 Химическая технология и биотехнология, 240502 Технология переработки пластических масс и эластомеров, 280202 Инженерная защита окружающей...»

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет радиофизики и компьютерных технологий Кафедра радиофизики и цифровых медиа технологий Учебное пособие по курсу Прикладная электродинамика автор: Демидчик Валерий Иосифович Введение ОБЩИЕ ПРИНЦИПЫ ЭЛЕКТРОДИНАМИКИ ПОЛЕЙ, ГАРМОНИЧЕСКИ МЕНЯЮЩИХСЯ ВО ВРЕМЕНИ Для электромагнитных колебаний, используемых в радиосвязи, радиовещании, телевидении существует общепринятая система разделения и наименования частотных диапазонов. Интересующие нас в рамках...»

«Министерство образования и науки Российской Федерации Московская государственная академия тонкой химической технологии им. М.В.Ломоносова Кафедра физики и химии твердого тела И.А. Каурова, Т.И. Мельникова Модулированные кристаллы: от теории к практике Москва 2011 УДК 548.3 ББК 24.5 Рецензент: д.ф-м.н. Болотина Н.Б. (ИК РАН им. А.В.Шубникова) Рекомендовано к изданию кафедрой физики и химии твердого тела МИТХТ (протокол № 10/10-11 от 27.05.11) В плане изданий (поз № 165). Каурова И.А., Мельникова...»

«ДЖАМАНБАЛИН Д. К А Р А С Е В А Э.М. Методические указания решению задач (МЕХАНИКА) УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ г. Костанай - 2007 ДЖАМАНБАЛИН К. К. КАРАСЕВА Э. М. Методические указания к решению задач (МЕХАНИКА) УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ ОСТАНАЙ Л ЕУМЕТ7ІК - ТЕХНИ К АЛ Ы К, УНИВЕРСИТЕТ! КІТАПХАНА БИБЛИОТЕКА КОСТАНАЙСКИЙ СОЦИАЛЬНО-ТЕХНИЧЬСКИР.. УНИВЕРСИТЕТ [ г. К о с т а н а й - 2 0 p ^ T j 'Д.і I Д4® Ш*' I I Рецеюенты: Щ І Медетов Н. А. - кандидат физико-математических наук, профессор ЩШШ...»

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ Проректор В.С.Бухмин ПРОГРАММА ДИСЦИПЛИНЫ Кристаллография и рентгеноструктурный анализ Цикл ДС ГСЭ - общие гуманитарные и социально-экономические дисциплины; ЕН - общие математические и естественнонаучные дисциплины; ОПД - общепрофессиональные дисциплины; ДС - дисциплины специализации; ФТД - факультативы. Направление: 010400 – Физика (Номер направления) (Название направления) Принята на заседании кафедры физики твёрдого тела (Название кафедры)...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ Зав. кафедрой радиофизики, профессор В.П. Якубов _05 12_ 2000 ИССЛЕДОВАНИЕ СИММЕТРИЧНОГО ВИБРАТОРА И ДИРЕКТОРНОЙ АНТЕННЫ Методические указания Томск – 2000 -2Указания РАССМОТРЕНЫ И УТВЕРЖДЕНЫ методической комиссией радиофизического факультета Протокол № _ от _ _ 2000 г. Председатель методической комиссии радиофизического факультета, доцент Г.М. Дейкова В методических указаниях содержится описание...»

«ФЕДЕРАЛЬНАЯ СЛУЖБА ИСПОЛНЕНИЯ НАКАЗАНИЙ РОССИИ ВОЛОГОДСКИЙ ИНСТИТУТ ПРАВА И ЭКОНОМИКИ КАФЕДРА ФИЛОСОФИИ И ИСТОРИИ Логика научного исследования (Учебное пособие для слушателей и адъюнктов ВИПЭ ФСИН России) ВОЛОГДА 2010 г. Авторы: д.филос.н., профессор каф. философии и истории ВИПЭ ФСИН России Б. В. Ковригин. к.ф.н., доцент каф. философии и истории ВИПЭ ФСИН России Н. В. Дрянных Рецензенты: к. филос. н., доцент каф. философии МГЮА (филиал в г. Вологде) В. В. Смирнов. к.ф.н., доцент каф. философии...»




 
© 2013 www.dis.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.